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Benefits of interaction and randomness so far:

* copture many languages beyond NP (colP, P™ PSPACE)
. dQle,aod'Q computation ( bounded-depth circvits)

Today we Sh)dy another benefit: Zero Knowiepge .

Informally, we seek TIPs that protect the privacy ot the honest prover,
The honest prover should reveal no information beyond the necessary bit “xe "

We illustrate this notion via +he lav\avaga QI={(G0,C|)| Go=G, }.
Recall thot GI is in NP : +Hhe witness is any isomorphism between the %rapks.
Hence there is o frivial TP: the TP prover sends an isomorphism to the TP verifier.

CHALLENGE . what it the isomorphism _is o private input of the honest prover?

How fo design an alternative TP for GI (qchieving Complefeness and soundness)
Where the honest prover reweals no information beyond =G, ¢



Interactive Proofs for Relations

A relofion is o set of instance-witness pairs R={(xw): ... }.

The corresponding languoge is LR):={x: 3 w st (xweR}.

Lanaua3es can be viewed as relations with emp‘\'y withesses : C

Example: + GI as a language Loz = $(Go,G1): Go=G/ ),

L={x: .}
R={(x,1): 3

¢ QI_ GS a |’Q|Q+.|0Y\ qu = {((aolq|)/ 0-) . qo:c.(q|> }. NO+€ 'H")Q+ LGI=L(RGI)'

The definition of an IP directly extends from languages to relations .

def: (PV) is an IP for a relation R with

completeness error €. and Soundness error €5 this holds :

@ completeness:

V(xwer FPr [( P(x,W;r,),V(X,'n,D:l] >1-§,

o

@ Soundness :
V xgLR) ¥ 7P Pr[(fj,V(x;n)):l]@Es
Ty

P(x,w)

‘)\"OVQ,\’

Today we focus on the (more general) case of IPs for relations.
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Zero Knowledge against Honest Verifiers

An IP (PV) for a relation R is honest-verifier zero Knowledge  (HV2K) it

3 polynomial-time. probobilistic. algorithm S (Known os the simulafor) such that
Y xweR  S(x) = View (P V x w)

Here View (PV.x,w):=(r x,ai,..,a.) iS all the information Seen by V' when

interacting with P(x,w): its randomness ¥, its input X, and the prover’s messages a,,.,a,.

INTERPRETATION: The honest verifier covld have simulated the inferaction by itsel ¥,
without talking to the honest prover. The simulator captures
this by efficiently sampling the honest verifier's view .

NoTes:

* HV2K is a joinT property of the honest prover P & homest verifier V,
( This is like +he completeness property, also a joint ‘property of P and V.)

» HV2K g preserved under Sequential ond paralle] repetition of the IP.



Honest-Verifier ZK for Graph Isomorphism [1/2]

fo-\—'.[qv::‘:-??g,)_) F((qo,q\)/q_) \/((qo,q\))

Somple. random
permutation ¢:(n1->[n]

H“-‘(P(&o) H N send an iSOW\orPhiSm
\ lo be{ol\} / 'Fl"OW\ qb to H
V"-‘-‘P"O’b ¥, HEVY(G,)

First we arque that this is an IP for QL.

CoMPLETENESS Suppose That ((Go,G)) &) € Rig lie s:[nl=[n]is st Go = c(G)).
For every be {o,\}/ Hz—\/’(C«L) —> H‘?-= (‘P°V’°)(Gb) < H;CP(Co) .

SOUNDNESS : Sv\p\oogq +hod (GO,G,)é L4I=L(R41)

Then H can be isomorphic  to aF most one of Go and G, .
Any malicious prover gets  covght  w.p. 7/(/2.



Honest-Verifier ZK for Graph Isomorphism [2/2]

claim: (PV) is HVZK P(6, G, o) V((G,G.)
m ndom
PL{!_‘ F‘X CoC) 0‘ € qu ;Zrm?cl;:afl::n O‘P [n1-=>(n]
T he honest verifier's view is H:=9(G,) H R
((GoG,), H,b,¥) b be{op]
where - H equals ¥(Gy) V=0 s® ¥, HZV¥(G,)

« b is a random bit
+ ¥ it o random permutation on [n) (i¥ is aither ¢ or cpoo-)

Consider the following  polynomial-time probabilishic 0\30r\'+kw\:

S((Ge,)) = 4. Sample befon}.
2. Sample random permulabion V:[(n1-[n].
3. Compute H:= Y(Gy).
L, Ovtput ((GoG.), H,b¥) .

Since Qo =4, , the output of S is eq\/idisi'ribufed as Vs view, o



Zero Knowledge against Malicious Verifiers [1/2]

We can s+ren3+hen zero Knowledge to require that even Verifiers V +hat¥ deviate

Prom the prescribed protocol Cannot learn any information besides the bit “xe L(R)'.

How does the Simulator S Know about +he maliciovs veritier V?

+ existential simulation: ¥efficient V 3 efficient Sy ¥ (xw)eR SV(X)EView(P,V,x,w)
+ universal simulation: 3 efficient S ¥ e{z{?\c’m\-\'v ¥ (xw)eR S (V,X)EView(P,V,x,w)
+ black-box simulation: 3 efficient S ¥ e@?\c'mf\-\'v ¥ (x w)eR SV(X) = View(P,V,xlw)

Note that malicious-verifier 2K is & property of the honest prover P alone.
( Compare with: completeness i of PRV ; soundness is of V; HV2K if of PRV. )
REMARK: PreServin3 malicious-verifier 2K under repetition of +he IP is tricKy.

- Sequential repetition preserves auxiliary~input  malicious-verifier 2K.

: - - =V (Pv : _\_ {_ \ . |_|_.
The condition is S‘l'renaH\Qn(d ‘o { Vaux Svf-x/‘“’x) View (P, N(“"X),X,W) for existential simulation
Youx S (V/ x/“VX)EVieW(P, V(GUX),X,W) for universal simulation

Black-box simulation supposts awxiliory inputs as is.
- Paralle! reyeﬁﬁon does NOT, in genera\/ preserve maliciovs-verifier 2K (assuming plavsible crypto).

This is even for black-box simulation .



Zero Knowledge against Malicious Verifiers [2/2]

We focvus on black-box simulation -

3 efficient S ¥ efficient ¥ ¥ xweR  SY(x) = View(P,V x w)
What is “efficient " ?
Ideally: V and § are polynomial-time probabilistic - algorithms
Problem:  Theorem [ Barak Lindell 2002]:

I{ L has on IP with round complexity k=0() soundness error £g= negl(n),

~

and S'x) runs in polynomial time (for polynomial-time V) then L € BFP.

Common workaround (+here are others): S runs in EXPECTED polynomial time .

def: An IP (PV) for a relation R is (maliciovs-verifier) zero Knowledge if
3 expected polynomial-time probabilistic algorithm S (called the simulator) such that
' Polynom'\d—ﬁme Probab'\lisﬁc V W (x,w)eR SV(X) = View(P,v,x,w)

LIMITATIONS ON  theorem: Suppose L has o k-round TP with &=negl(n) and (expected polynomial-time) Simulation.
Round CompLexiTy * If K=2 then LeBPP (even for existential simulation). < [0wn 167 10Goldraich Oren 03]
Ly <« If k=3 and simulation is black box +then LEBPP. [ Goldreich kraweayk el
« If k=0(1) , the IP is public-coin, and simulation is black box +hen LeBPP,



Malicious-Verifier ZK for Graph Isomorphism
claim: (PV) is MvzK P((6,.G.),) V((6,.6))

/

Somple. random

Eroof: Fix ((Go,G,),o-)e qu and \7 permufation ?:[n]-»['\]

The view of the maliciovs verifier Vis  H=9(4,) H |
((Go,G1), H,B,¥) b befol
where  « H equals V(Gf) Yi=0oq? Y . HLIv(,)

. B is distributed as V(H)
+ ¥ it o random permvtation on [n] (i¥ is cither @ or Poac)

Consider the Following ExPECTED  polynomial-time  probabilistic Q\aor\‘H\w\:

Sv((GO,G,)) = SQW\Ple be{o,l}. SV((Go,G.)) runs in expected Polynomiq\ time :

I

S uses Vv ot\\y
0S O black-box

SQMFle random Y:[nl-[n]. Go= G, = H is inde.po.ndqu' of b
- b s independent of b

Compute H:="¥(Gy). - %lE-b1=' > E[#rewinds)-2.

1.
2.
3.
: g:\le : :: :0 ;:oq?_: :- SV((GZG.)) ~ Lollows ~'H\e ~desired djs’rribvl'iom :

. e[ B0l B-b] = Belb=onb=bl_ B[b=o}h _g[T.o]
6. Ovtput ((GoG.), H,b¥) . A A =

9



Limitations of Zero Knowledge

What happens more generally?

def: < Hvzk-zP = all languages that have IPs with honest-verifier zero Knowledge

o (M)2k-1P = all languages thot hove IF with malicious-verifier 2ero knowledge

simvlator does nethi "

V
SJr\‘oC\%\\Hfomard: BPP < MV2K-IP ¢ Hv2k-IFP ¢ IP
Moreover, we proved that GILe Mv2k-IP (and GIL is not Known to be in BFF)

Q: What \aﬂguaﬁes have 2ero Knowledge IPs?

+heorem: HVZK-1P ¢ AM n coAM

(S'mce NP < coAM directly implies that coNP ¢ IPLk=0(D] which)
Hence we do mot expect that NP < HVZk-TP.

'|mP|iQS H\O& 'qu Polynom'\a\ Hie\—archy Collapses [Boppana, Hastad, Zachos 1987] .

So far we discussed PerFect Zero KwowLenge (P2k), where S(x) equals the verifier's view.

The above limitation holds even for honest-verifier STaTisTicAL ZEro Knowrenge (SZK)/

which relaxes +he requitement on the simulator for the honest verifier:

require only that S(x) and View(PV,xw) are stafistically close

10



Intuition on the Limits of HVZK-IP [1/2]

Suppose that (PV) is an HVZK IP for L.
e} S be the HVZK simvlator. We Know that ¥xel S(x) = View(PV x).

Q: What does S(x) do if xgL?

O Slx) ovtputs a view (r,x,q,,.,ac) that is RETECTING (uith nonnegligible probebili,)
@ S(x) O\nLPv{'s a view (F,x,0,.,0) Hhat is ACCEPTING (but for o neah'sib)t Probabilif/)

I{i OP'l' 1on @ then Le BPP (inthe quer”'m{ini’rely offen’ sense): uSe Hhe Simulator to decide,

T3 BPP machine +hat decides- L on
SQ SUPPOSQ H\a'\' OP'HOI'\ @ hO\dS . infinitely many (maybe not all) input Sizes

OBseprvation: xe L = S(x) and View(PV.x) are statistically far
Tndeed, soundness implies that View(PV,x) is accepting with small probability.

Approoch o prove lemmo: VT (x) samples o view from S(x) and asks B (x)
To prove that the sample follows o distribution +hat is far from +the case xe L .

11



Example: from HVZK-IP for Gl to IP for GNI

Consider the HVvzk TP for ¢TI ond its simuvlator:

£L(6,,6),) V{(6G,,6)) S((GoG.)) = 4. Sample befo,},
mple random . S Tnl-
S o 3L} [n] 5 SRR ee DL,
He= () H 3. CovaTe H:=Y(G,).
b befol L Ovtput ((GoG.), H,b¥) .
v‘:@"‘rb v, H;V(Gb)

We proved that i Go=G, then S((Go,4)) = View (PV (6o,G.) o).
TF Go#G, then S((GoG)) shill ovtputs occepting views but with a DIFFERENT distribution.
We can vse this to recover the protocol for GNI (the complement of GI) !

q~1((6°/a‘)> Vq,.,l(( o, 4‘l)) % qu; Funs the simvlator {or (PGI,VGI)/ and
be {0,1} then cha\\qmets the prover to show that G, # G,
LR il
find g st H H:=m(Gp) Tndeed H determines b when Go# G,
_t,

H= 4p b

Ey asKing He ptover to guess the kit b .

b2k and H s \,\d,a.‘)mda_r\’r from b when QOEG,.

12



IPs with Computational Zero Knowledge

We. still want 2ero Knowledge for NP (and mor). What 4o do?

: 1AL ¢ and {B.l (¢ st
One approach is CoMPuTATiONAL ZERO KNOWLEDGE : ¥ poly-size crcutt Fanily EDntnen

relax +he rec‘viremen‘} on the Simulator +o

SY(x) and View (P,V,xw) are computationally close

1 his leads to cotresponding complexity classes: HVC2K-IP X Mvczk-IP

Everything Provable is Provable in Zero-Knowledge

Michael Ben-Or Hebrew University
. . Oded Goldreich Technion — Israel Institute of Technology
‘\-\'\ Qotem: ‘F OWF$ X\ &*‘ '\'hQ'\ M\/C ZK— If = I F Shafi Gol.dwasser M.LT. Laboratory for Computer Science
Johan Hastad Royal Institute of Technology, Sweden
‘ Joe Kilian M.L.T. Laboratory for Computer Science
One-way functions Silvio Micali M.ILT. Laboratory for Computer Science
Phillip Rogaway M.LT. Laboratory for Computer Science

We sKetch a weaKer result:

Proofs that Yield Nothing But Their Validity or
All Languages in NP Have Zero-Knowledge

Proof Systems
ODED GOLDREICH SILVIO MICALI AND  AVI WIGDERSON

theorem: commitment schemes = NP < MVCzK-IP

The limitations of [Goldreich Krawczyk 1996] and [ Barok Lindell 2002] hold even for CZK,

Circumven‘hng +he limrtations motivates the study of non-black-box universal simvlators.

| .PI—[qu (Ax)':l] - E\'[DM(BX):':” = Y\Qa\ (‘x‘)

13



The GMW Protocol for 3COL [1/3]

Consider the NP- compld'e 3COL (groph 3-coloring) problem:
e Lip = {G=(VE): G is o 3-colorable %rmpk}

* Ryeop = 1(G,a) = 6:V—=1I3] is o 3-coloring of G=(VE) } 3-coloring of the

P not 3-colorable
¥ (i))€E. aj#a etersen groph

We study the Go\dreich—Micali—Wiaderson (GMW) ptotocol for c‘]raph 3-C0\omb’|\i1'y.
It is an MVC2K-IP for R,, . This yields MvCzk-IPs for all of NP.

Main TOOL: COMMITMENT S-CHEMES' (for simplicity | non-inferactive )

A tuple CM = (cM.Commit, CM.Check) thet safisfies these properties:
o completeness: ¥ meM B [ CM.Check (em,m,pf) =1 | (cm,pf) &« CM.Commit(m) ]=1 _
. PerFed binding: Veme? |[{meM: EIP(ieO’ s+ CM.Check (cmm, pf)=1 H=1.

o compu’rafional hidins; computationally close

Vmo,m,e M ; { cmo | (Cmo,P'FO)(" CM.Commi‘l‘(mo)} _;_ { em, | (le,P‘“ )& CM‘Commi'l'(mu)}

ExAMpPLE : El Gamal commitment scheme

Note -
in every commitment scheme,
\ .
CM. Setup (1) — ;@,3{?) CM.Comrer(meQ)—?(cm,l—z CM.ChecK (cm,m,r) == hiding or binding must
r r
grovp of random qrovp where cm:= (% /M'h )€ ¢ cm; (gr,m-hr) bQ compui'aﬁonal
prime order 9 elements in

ond t-is random in Zq

14



The GMW Protocol for 3COL [2/3]

We describe the GMW protocol for graph 3-colorability,

P(G,a:V-[3]) V(G)

Sample tandom permutation @:L3]->([3]

Permute colors: b:= oo

¥ veV, (emyphv)e CM.Commit (by). (C"’v)veV>
y (i,3) (i,j) « €
(bi,PFa,bs,Pﬁ‘)) bibje [31 bi#b;

CM.CheeK(cm; b P") |
CM ChQCK(CmJ,bJ,PFJ) I

This profocol is an IP for Reop .

¢ comP|e+eness error £.=0 ¢ LIf a is o 3-Co|orin3 of q 'H\en/ for every Permufai‘iOn P,
b is also a 3-coloring of G4 . Hence, ¥ (i,)eE, b and b; are distinct colors in [3],

* Soundness error £ = I-E Fix a maliciovs IP prover P. Let (&n )y be its commitments.
By perfect binding of (M (&), defines o partial coloring &:V — [3].
Since G is not 3-colorable, (7 *)EE sk A= (or one of oy or 4y is undefined).

ILf V sends (i*)¥) then P cannot convince V o accept,

15



The GMW Protocol for 3COL

P (G a:V-[3])
Sample tandom permutation :[3]1->[3]

lemma: +he GMW protocol

For Rscor safisties C2K., Permute colors: b:= oo

VVeV; (emy, plv )< CM. Commit (b, ) . (C"‘V)veV>
We describe the simvlator and (1)
only sKefch its analysis. (b, ph, bs, pH)

Fix o 3-colorable 3mpk G and a maliciovs IP verifier V.

sY(6@):= 1. Sample (i))eE.

(i)« €
bi,bje[3] bi#b;

CM. Check ( cm;,b;,P&) % [
CM. ChecK(em;, b;, pf;) = |

2. Sample bi b; < [3] s+ bi#b;.

3. ¥veVA{ij}, set by=1. EASY :

b, YveV, (emypl)e CM. Commit (by). the output of SV(G ),
5. Give (em)ev to V do 9ot (1,7). if it halts, follows +he
6. IF (1,3)#C,3) then GoTO 1. desired distribution.
7. Ovtput (G, (emev7, (T3), (brpts, b, k) ) .

Harp : Does SY(4) run in expected polynomial-time (or een hait) ¢ Computational hiding of CM

implies that V cannot “force” (7,3)#(i)) too often. Al’3oir\3 this is delicate.

16



Zero Knowledge Beyond IPs

Zero Knowledgz con be defined for other models of Probabilis’ric proof .

The capobilities and limitations of zero Knowledge are (very) different in each setting.

ExamPle: zero knowledge 1A
An interactive argument (IA) is an IP whose soundness is reloxed to

computational sovndness (consider only malicioys provers that are efficient ) .

'l'hQOVQIYY OWFS —) NP < MVZK-IA Tdea: modiFy +he GMR proi'owl Yo use CM +that
is perfectly hidins 8 computationally bind'\ng,

EXO\W\F\QZ Pedersen commitment scheme

Example: 2ero Knowledge MIP
A multi-prover inferactive proof (MIP) is o generalization of an IP where

t+he verifier interacts with multiple non—communicahng provers.

Multi-Prover Interactive Proofs:

"_l\QOI'QW\'. M\/%\(- M\? = M\P How to Remove Intractability Assumptions
Michael Ben-Or* Shafi Goldwasser!  Joe Kilian? Avi Wigderson®
Hebrew University MIT MIT Hebrew University

Cryptography is teplaced by o phys'\cal assumption (t+he provers cannot communicate)

One ingredient of the theorem: unconditional commitments in the MIP model.

17
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