Foundations of Probabilistic Proofs

A course by Alessandro Chiesa

Lecture 05

Zero-Knowledge IPs

Zero Knowledge IPs

paper that first introduced the notion of zero Knowledge

The Knowledge Complexity of Interactive Proof Systems

Shafi Goldwasser Silv MIT

Silvio Micali MIT

Charles Rackoff
University of Toronto

Benefits of interaction and randomness so far:

- · capture many languages beyond NP (coNP, P*P, PSPACE)
- · delegate computation (bounded-depth circuits)

Today we study another benefit: ZERO KNOWLEDGE.

Informally, we seek IPs that protect the privacy of the honest prover. The honest prover should reveal no information beyond the necessary bit "x \in L".

We illustrate this notion via the language $GI = \{(G_0,G_1) \mid G_0 = G_1\}$. Recall that GI is in NP: the witness is any isomorphism between the graphs. Hence there is a trivial IP: the IP prover sends an isomorphism to the IP verifier.

CHALLENGE: what if the isomorphism is a private input of the honest prover?

How to design an alternative IP for GI (achieving completeness and soundness) where the honest prover reveals no information beyond $G_0 = G_1$?

Interactive Proofs for Relations

A relation is a set of instance-witness pairs $R = \{(x,w) : ... \}$.

The corresponding language is $L(R) := \{x : \exists w \text{ s.t. } (x,w) \in R\}$.

Languages can be viewed as relations with empty witnesses: $R = \{(x, \bot) : ... \}$

Example: • GI as a language $L_{GI} = \{(G_0, G_1): G_0 = G_1\}$.

• GI as a relation $R_{GI} = \{((G_0,G_1),\sigma): G_0 = \sigma(G_1)\}$. Note that $L_{GI} = L(R_{GI})$.

The definition of an IP directly extends from languages to relations.

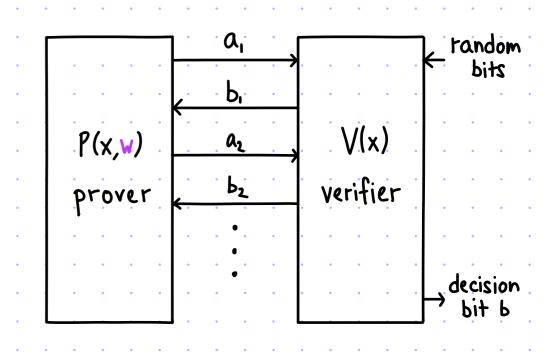
 $\frac{\text{def:}}{\text{completeness}}$ (P,V) is an IP for a relation R with completeness error ε_c and Soundness error ε_s this holds:

1 completeness:

$$\forall (x,w) \in R$$
 $\Pr_{r,r_v} \left[\langle P(x,w;r_p), V(x;r_v) \rangle = 1 \right] \ge 1 - \varepsilon_c$

2 Soundness:

$$\forall \times \not\in L(R) \ \forall \ \widetilde{P} \ P_r \left[\langle \widetilde{P}, V(x;r_v) \rangle = 1 \right] \leq \varepsilon_s$$



Today we focus on the (more general) case of IPs for relations.

Zero Knowledge against Honest Verifiers

An IP (P,V) for a relation R is honest-verifier zero Knowledge (HVZK) if

 \exists polynomial-time probabilistic algorithm S (Known as the simulator) such that $\forall (x,w) \in R$ $S(x) \equiv View(P,V,x,w)$

Here $View(P,V,x,w):=(r,x,a_1,...,a_k)$ is all the information seen by V when interacting with P(x,w): its tandomness r, its input x, and the prover's messages $a_1,...,a_k$.

INTERPRETATION: The honest verifier could have simulated the interaction by itself, without talking to the honest prover. The simulator captures this by efficiently sampling the honest verifier's view.

NOTES:

- HVZK is a joint property of the honest prover P & honest verifier V. (This is like the completeness property, also a joint property of P and V.)
- · HVZK is preserved under sequential and parallel repetition of the IP.

Honest-Verifier ZK for Graph Isomorphism

$$\begin{array}{c}
\sigma: [n] \rightarrow [n] \\
\text{s.t. } G_o = \sigma(G_i)
\end{array}$$

$$P((G_o, G_i), \sigma)$$

$$V((G_o, G_i))$$

$$Sample random \\
permutation $\varphi: [n] \rightarrow [n]$

$$H:= \varphi(G_o)$$

$$\begin{array}{c}
H \\
b \\
\hline
\psi \\
\end{array}$$

$$\begin{array}{c}
b \\
\hline
\psi \\
\end{array}$$

$$\begin{array}{c}
b \\
\end{array}$$

$$\begin{array}{c}$$$$

First we argue that this is an IP for GI.

COMPLETENESS: Suppose that $((G_0,G_1),\sigma) \in \mathcal{R}_{GI}$ (i.e. $\sigma:[n] \to [n]$ is s.t. $G_0 = \sigma(G_1)$).

For every $b \in \{0,1\}$, $H \stackrel{?}{=} \Upsilon(G_b) \longleftrightarrow H \stackrel{?}{=} (\varphi \circ \nabla^b)(G_b) \longleftrightarrow H \stackrel{?}{=} \varphi(G_o)$.

SOUNDNESS: Suppose that (Go,GI) & LGI = L(RGI)

Then H can be isomorphic to at most one of Go and G.

Any malicious prover gets caught w.p. > 1/2.

Honest-Verifier ZK for Graph Isomorphism

[2/2]

The honest verifier's view is

- where H equals $\gamma(G_b)$
 - · b is a random bit

$$P((G_o,G_i),\sigma)$$

sample random permutation P:[n]→[n]

$$\psi := \phi \circ \sigma^b$$

$$V((G_{o},G_{i}))$$

$$b \leftarrow \{0,1\}$$

$$\downarrow \psi \qquad \qquad H \stackrel{?}{=} \psi(G_b)$$

· γ is a random permutation on [n] (it is either φ or φοσ)

Consider the following polynomial-time probabilistic algorithm:

$$S((G_0,G_1)) := 1.$$
 Sample $b \in \{0,1\}.$

- 2. Sample random permutation Y:[n]→[n].
- 3. Compute H := Y(Gb).
- 4. Output ((Go,G1), H,b, 4).

Since Go = G1, the output of S is equidistributed as V's view.

Zero Knowledge against Malicious Verifiers

We can strengthen zero Knowledge to require that even verifiers \tilde{V} that deviate from the prescribed protocol cannot learn any information besides the bit "x \in L(R)".

How does the simulator S Know about the malicious verifier V?

- existential simulation: $\forall efficient \widetilde{V} \exists efficient S_{\widetilde{v}} \forall (x,w) \in \mathbb{R}$ $S_{\widetilde{v}}(x) \equiv View(P, \widetilde{V}, x, w)$
- universal simulation: $\exists efficient S \forall efficient \tilde{V} \forall (x,w) \in \mathbb{R} \quad S(\tilde{V},x) \equiv View(P,\tilde{V},x,w)$
- black-box simulation: $\exists efficient S \forall efficient \tilde{V} \forall (x,w) \in \mathbb{R} S^{\tilde{V}}(x) \equiv View(P, \tilde{V}, x, w)$

Note that malicious-verifier ZK is a property of the honest prover P alone. (Compare with: completeness is of P&V; soundness is of V; HVZK if of P&V.)

REMARK: Preserving malicious-verifier ZK under repetition of the IP is tricky.

- Sequential repetition preserves auxiliary-input malicious-verifier $\frac{2}{2}$ K. The condition is strengthened to $\begin{cases} \frac{\forall aux}{\sqrt{(x,aux)}} = \frac{\forall iew}{\sqrt{(P,V(aux),x,w)}} & \text{for existential simulation} \\ \frac{\forall aux}{\sqrt{\sqrt{(x,aux)}}} = \frac{\forall iew}{\sqrt{(P,V(aux),x,w)}} & \text{for universal simulation} \\ \text{Black-box simulation supports auxiliary inputs as is.} \end{cases}$
- Parallel repetition does NOT, in general, preserve malicious-verifier ZK (assuming plausible crypto).

 This is even for black-box simulation.

Zero Knowledge against Malicious Verifiers

We focus on black-box simulation:

 $\exists efficient S \forall efficient \tilde{V} \forall (x,w) \in R S^{\tilde{V}}(x) \equiv View(P,\tilde{V},x,w)$

What is "efficient"?

Ideally: V and S are polynomial-time probabilistic algorithms

Problem: 1

theorem [Barak Lindell 2002]:

If L has an IP with round complexity K=O(1), soundness error $\mathcal{E}_s=\text{negl}(n)$, and $S^{\tilde{V}}(x)$ runs in polynomial time (for polynomial-time \tilde{V}) then $L \in BPP$.

Common workaround (there are others): 5 runs in EXPECTED polynomial time

<u>def</u>: An IP (P,V) for a relation R is (malicious-verifier) zero Knowledge if \exists expected polynomial-time probabilistic algorithm S (called the simulator) such that \forall polynomial-time probabilistic \widetilde{V} \forall (x,w) \in R $S^{\widetilde{V}}(x) \equiv V_{iew}(P, \widetilde{V}, x, w)$

LIMITATIONS ON ROUND COMPLEXITY

<u>theorem</u>: Suppose L has a k-round IP with $\varepsilon_s = negl(n)$ and (expected polynomial-time) simulation.

• If K=2 then LEBPP (even for existential simulation). ~ [Oren 1987] [Goldreich Oren 1993]

• If K=3 and simulation is black box then LEBPP. - [Goldreich Krawczyk 1990]

• If K=O(1), the IP is public-coin, and simulation is black box then LEBPP.

Malicious-Verifier ZK for Graph Isomorphism

claim: (P,V) is MVZK

proof: Fix $((G_0,G_1),\sigma) \in R_{GI}$ and \widetilde{V} . The view of the malicious verifier V is

$$((G_0,G_1),H,\widetilde{b},\gamma)$$

where • H equals Y(GB)

• B is distributed as V(H)

$$P((G_0,G_1),\sigma)$$

sample random permutation $\varphi:[n] \rightarrow [n]$

$$H := \Phi(G_o)$$

$$V((\zeta_{o},\zeta_{i}))$$

$$\longrightarrow$$

$$\xrightarrow{\gamma}$$
 $H \stackrel{?}{=} \gamma(G_b)$

· Y is a random permutation on [n] (it is either 9 or 900)

Consider the following EXPECTED polynomial-time probabilistic algorithm:

$$S^{\tilde{V}}((G_0,G_1)) := 1$$
. Sample $b \in \{0,1\}$.

2. Sample random Υ :

Suses \tilde{V} only as a black-box

3. Compute $H := \Upsilon(G_0)$

- 2. Sample random Y:[n]→[n].
- 3. Compute H := Y(Gb).
- 4. Give H to V to get b.
- 5. If b ≠ b then GOTO 1.
- 6. Output ((Go,G.), H, b, Y).

$$G_0 = G_1 \rightarrow H$$
 is independent of b
 $\rightarrow \widetilde{B}$ is independent of b
 $\rightarrow P_1[\widetilde{B}=b]=1/2 \rightarrow \mathbb{E}[\#\text{rewinds}]=2$.

$$\rightarrow P_{+}[\tilde{b}=b]=1/2 \rightarrow E[\#rewinds]=2$$

$$\Pr[\hat{b}=0|\hat{b}=b] = \Pr[\hat{b}=0,\hat{b}=b] = \Pr[\hat{b}=0] \cdot \frac{1}{2} = \Pr[\hat{b}=0] \cdot \frac{1}{2}$$

Limitations of Zero Knowledge

What happens more generally?

<u>def:</u> • HVZK-IP = all languages that have IPs with honest-verifier zero Knowledge

• (MV)ZK-IP = all languages that have IPs with malicious-verifier zero knowledge

Simulator does nothing

Straightforward: BPP & MV2K-IP & HV2K-IP & IP

Moreover, we proved that GIE MVZK-IP (and GI is not Known to be in BPP).

Q: What languages have zero Knowledge IPs?

theorem: HVZK-IP = AM n coAM

Hence We do not expect that NP = HVZK-IP. (Since NP = coAM directly implies that coNP = IP[K=O(1)], which implies that the Polynomial Hierarchy collapses [Boppana, Håstad, Zachos 1987].

So far we discussed PERFECT ZERO KNOWLEDGE (PZK), where S(x) equals the verifier's view. The above limitation holds even for honest-verifier STATISTICAL ZERO KNOWLEDGE (SZK), which relaxes the requirement on the simulator for the honest verifier: require only that S(x) and View(P,V,x,w) are statistically close.

Intuition on the Limits of HVZK-IP

[1/2]

Suppose that (P,V) is an HV2k IP for L. Let S be the HV2k simulator. We know that $\forall x \in L S(x) \equiv View(P,V,x)$.

Q: What does S(x) do if x&L?

- 1 S(x) outputs a view (r,x,a,...,ak) that is REJECTING (with non-negligible probability)
- 2 S(x) outputs a view (t,x,a,,..,ak) that is ACCEPTING (but for a negligible probability)

If option 1) then LEBPP (in the weaker infinitely often sense): use the simulator to decide.

So suppose that option 2 holds.

OBSERVATION: XEL -> S(X) and View (P,V,X) are statistically far

Indeed, soundness implies that View (P,V,x) is accepting with small probability.

Approach to prove lemma: $V_{L}(x)$ samples a view from S(x) and asks $P_{L}(x)$ to prove that the sample follows a distribution that is far from the case $x \in L$.

Example: from HVZK-IP for GI to IP for GNI

Consider the HVZK IP for GI and its simulator:

$$P_{q_{I}}((G_{o},G_{i}),\sigma)$$

$$Sample \ random \ permutation \ \Phi:[n] \rightarrow [n]$$

$$H:=\Phi(G_{o})$$

$$\psi:=\Phi \circ \sigma^{b}$$

$$V_{q_{I}}((G_{o},G_{i}))$$

$$U_{q_{I}}((G_{o},G_{i}))$$

$$U_{q_{I}}((G_{o},G_{i})$$

We proved that if $G_0 = G_1$ then $S((G_0,G_1)) = View(P,V,(G_0,G_1),\sigma)$. If $G_0 \neq G_1$ then $S((G_0,G_1))$ still outputs accepting views but with a Different distribution. We can use this to recover the protocol for GNI (the complement of GI)!

$$P_{qNI}((G_0,G_1))$$

$$V_{qNI}((G_0,G_1))$$

$$b \leftarrow \{0,1\}$$

$$\pi \leftarrow \{permutations\}$$
on vertices
$$H := \pi (G_b)$$

$$H = G_b^{\infty}$$

$$\tilde{b} \stackrel{?}{=} b$$

Vani runs the simulator for (P_{GI}, V_{GI}) , and then challenges the prover to show that $G_0 \neq G_1$ by asking the prover to guess the bit b.

Indeed H determines b when $G_0 \neq G_1$, and H is independent from b when $G_0 = G_1$.

IPs with Computational Zero Knowledge

We still want zero knowledge for NP (and more). What to do?

One approach is COMPUTATIONAL ZERO KNOWLEDGE:

relax the requirement on the simulator to

 $S^{V}(x)$ and $View(P, \tilde{V}, x, w)$ are

 $\{A_x\}_{x\in S}$ and $\{B_x\}_{x\in S}$ s.t. Y poly-size circuit family {Dn}neN | Pr[D1x1 (Ax)=1] - Pr[D1x1 (Bx)=1] | = negl(1x1)

computationally close

This leads to corresponding complexity classes: HVCZK-IP &

MVCZK-IP

theorem: if OWFs exist then MVCZK-IP = IP

one-way functions

Everything Provable is Provable in Zero-Knowledge

Michael Ben-Or Oded Goldreich Shafi Goldwasser Johan Håstad Joe Kilian Silvio Micali

Phillip Rogaway

Hebrew University Technion - Israel Institute of Technology M.I.T. Laboratory for Computer Science Royal Institute of Technology, Sweden M.I.T. Laboratory for Computer Science M.I.T. Laboratory for Computer Science M.I.T. Laboratory for Computer Science

We sketch a weaker result:

theorem: commitment schemes -> NP = MVCZK-IP Proofs that Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge **Proof Systems**

ODED GOLDREICH SILVIO MICALI AND AVI WIGDERSON

The limitations of [Goldreich Krawczyk 1990] and [Barak Lindell 2002] hold even for CZK.

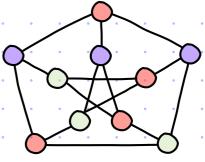
Circumventing the limitations motivates the study of non-black-box universal simulators.

The GMW Protocol for 3COL

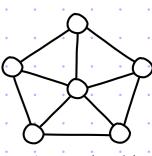
[1/3]

Consider the NP-complete 3COL (graph 3-coloring) problem:

- · L3col := { G=(V,E): G is a 3-colorable graph }
- $R_{3COL} := \{ (G, a) : a: V \rightarrow [3] \text{ is a } 3\text{-coloring of } G = (V, E) \}$



3-coloring of the Petersen graph



not 3-colorable

We study the Goldreich-Micali-Wigderson (GMW) protocol for graph 3-colorability. It is an MVCZK-IP for R_{3col} . This yields MVCZK-IPs for all of NP.

MAIN TOOL: COMMITMENT SCHEMES (for simplicity, non-interactive)

A tuple CM = (CM. Commit, CM. Check) that satisfies these properties:

- · completeness: \text{\text{meM}} Pr [CM.Check(cm, m, pf) = 1 | (cm, pf) ← CM.Commit(m)] = 1.
- · perfect binding: \text{ cm ∈ C | { m ∈ M : } pf ∈ Ø s.t. CM. Check (cm, m, pf) = 1 } | = 1.
- · computational hiding:

computationally close

∀ mo, m, ∈ M, { cmo | (cmo, pfo) ← CM. Commit (mo)} = { cm, | (cm, pf,) ← CM. Commit (m,)}

EXAMPLE: El Gamal commitment scheme

CM. Setup(
$$I^{\lambda}$$
) \rightarrow (G, g, h)

group of random group

prime order q elements in G

CM. Commit(
$$m \in G$$
) \rightarrow (cm, r) C
where $cm := (g^r, m \cdot h^r) \in G^2$
and r is random in \mathbb{Z}_q

$$CM.Check(cm,m,r) :=$$

$$cm \stackrel{?}{=} (g^r,m\cdot h^r)$$

Note:

in every commitment scheme, hiding or binding must be computational

The GMW Protocol for 3COL

We describe the GMW protocol for graph 3-colorability.

$$P(G, a: V \rightarrow [3])$$

$$Sample random permutation $\phi: [3] \rightarrow [3]$

$$Permute colors: b:= \phi \circ a$$

$$\forall v \in V, (cm_v, pf_v) \leftarrow CM. (cm_mit(b_v)). \xrightarrow{(cm_v)_{v \in V}} (i,j) \leftarrow E$$

$$\xrightarrow{(b_i, pf_i, b_j, pf_j)} b_{i,b_j \in [3]} b_{i \neq b_j}$$

$$CM. Check (cm_j, b_j, pf_j)^{\frac{2}{3}} CM. Check (cm_j, b_j, pf_j)^{\frac{2}{3}} CM$$$$

This protocol is an IP for R3col.

- completeness error $\mathcal{E}_c = 0$: If a is a 3-coloring of G then, for every permutation φ , b is also a 3-coloring of G. Hence, \forall (i,j) \in E, bi and bj are distinct colors in [3].
- Soundness error $\mathcal{E}_s = 1 \frac{1}{|E|}$: Fix a malicious IP prover \widehat{P} . Let $(\widehat{cm}_v)_{v \in V}$ be its commitments. By perfect binding of CM, $(\widehat{cm}_v)_{v \in V}$ defines a partial coloring $\widehat{a}: V \to [3]$. Since G is not 3-colorable, $\exists (i^*, j^*) \in E$ s.t. $a_{j^*} = a_{j^*}$ (or one of a_{i^*} or a_{j^*} is undefined). If V sends (i^*, j^*) then \widehat{P} cannot convince V to accept.

The GMW Protocol for 3COL

lemma: the GMW protocol for R_{3col} satisfies C2K.

We describe the simulator and

only sketch its analysis.

Fix a 3-colorable graph G and a malicious IP verifier V.

 $P(G, a: V \rightarrow [3])$ Sample random permutation p:[3]→[3] Permute colors: b = φ • a $\forall v \in V$, $(cmv, pfv) \leftarrow CM \cdot Commit(bv)$.

(cm_v)_{ve}V · · (i, j) · (b_i,p_i,b_i,p_i) $(i,j) \leftarrow E$ bi,bj ∈ [3] bi ≠ bj CM. Check $(cm_i, b_i, pf_i) \stackrel{?}{=} 1$ CM. Check $(cm_j, b_j, pf_j) \stackrel{?}{=} 1$

V (G)

- $S^{V}(G) := 1$. Sample $(i,j) \leftarrow E$.
 - 2. Sample bi, bj ← [3] s.t. bi ≠ bj.
 - 3. $\forall v \in V \setminus \{i,j\}$, set $b_v := 1$.
 - 4. ∀ v∈V, (cmv, pfv) ← CM. Commit (bv).
 - 5. Give $(cm_v)_{v \in V}$ to \tilde{V} to get $(\tilde{1},\tilde{j})$.
 - 6. If $(\tilde{1},\tilde{j})\neq(\tilde{1},\tilde{j})$ then GOTO 1.
 - 7. Output (G, (cm,)veV, (ĩ,ĩ), (bĩ, pfī, bī, pfī)).

EASY:

the output of $5^{\circ}(G)$, if it halts, follows the desired distribution.

HARD: Does 50(4) run in expected polynomial-time (or even halt)? Computational hiding of CM implies that \tilde{V} cannot "force" $(\tilde{I},\tilde{J})\neq (\tilde{I},\tilde{J})$ too often. Arguing this is delicate.

Zero Knowledge Beyond IPs

Zero Knowledge can be defined for other models of probabilistic proof.

The capabilities and limitations of zero Knowledge are (very) different in each setting.

Example: zero Knowledge IA

An interactive argument (IA) is an IP whose soundness is relaxed to computational soundness (consider only malicious provers that are efficient).

theorem: OWFs → NP = MVZK-IA

Idea: modify the GMR protocol to use CM that is perfectly hiding & computationally binding.

Example: Pedersen commitment scheme

Example: zero Knowledge MIP

A multi-prover interactive proof (MIP) is a generalization of an IP where the verifier interacts with multiple non-communicating provers.

theorem: MVZK-MIP = MIP

Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions

Michael Ben-Or* Hebrew University Shafi Goldwasser[†] MIT Joe Kilian[‡] MIT Avi Wigderson[§] Hebrew University

Cryptography is replaced by a physical assumption (the provers cannot communicate).

One ingredient of the theorem: unconditional commitments in the MIP model.

Bibliography

Zero-Knowledge

- [GMR 1985]: The knowledge complexity of interactive proof-systems, by Shafi Goldwasser, Silvio Micali, Charles Rackof.
- [GMW 1991]: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems, by Oded Goldreich, Silvio Micali, Avi Wigderson.
- [Goldreich 2010]: Zero-knowledge: a tutorial, by Oded Goldreich.
- () Computer scientist explains zero knowledge proofs in 5 levels of difficulty), by Amit Sahai.
- () History of ZK), by Shafi Goldwasser.

Power of **ZK**

- [BGGHKMR 1988]: Everything provable is provable in zero-knowledge, by Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian, Silvio Micali, Phillip Rogaway.
- [BGKW 1988]: Multi-prover interactive proofs: how to remove intractability assumptions, by Michael Ben-Or, Shafi Goldwasser, Joe Kilian, Avi Wigderson.

Limitations of ZK

- [Fortnow 1987]: The complexity of perfect zero-knowledge, by Lance Fortnow.
- [AH 1987]: Perfect zero-knowledge languages can be recognized in two rounds, by William Aiello, Johan Håstad.
- [GO 1994]: Definitions and properties of zero-knowledge proof systems, by Oded Goldreich, Yair Oren.
- [GK 1998]: On the composition of zero-knowledge proof systems, by Oded Goldreich, Hugo Krawczyk.
- [BL 2002]: Strict polynomial-time in simulation and extraction, by Boaz Barak, Yehuda Lindell.